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Abstract. This paper describes a classification scheme for irrotational cosmological models 
which is not based on the existence of a group of local isometries and hence is suitable for 
studying inhomogeneous cosmologies. The scheme is based on the algebraic structure of 
three trace-free symmetric two-index tensors which are defined in such models, namely the 
shear tensor of the fluid congruence, assumed irrotational, and the trace-free Ricci and 
Cotton-York tensors associated with the hypersurfaces orthogonal to the fluid. The 
restrictions that are imposed on these tensors by the existence of various groups of local 
isometries are derived, thereby relating the present approach to the usual classifications 
involving Killing vectors. These results lead to the conjecture that the algebraic structure of 
the Cotton-York tensor (whose vanishing is a necessary and sufficient condition for the 
hypersurfaces to be conformally flat) is related to the nature of the gravitational waves that 
might be present. 

1. Introduction 

The aim of this paper is to provide a mathematical framework for studying local 
properties of space-times which satisfy the Einstein field equations with an irrotational 
(perfect) fluid, and possibly an electromagnetic field as source. Our main interest, 
however, is in applying this to the study of spatially inhomogeneous cosmological 
models of this type. By ‘spatially inhomogeneous’ we mean that the space-like 
hypersurfaces orthogonal to the fluid flow are not the orbits of a local group of 
isometries. The structure associated with this problem is a space-time, on which is 
defined a unit future-pointing time-like vector field U which is irrotational and hence 
determines locally a family of space-like hypersurfaces. 

The problem can thus be regarded as one of classifying three-dimensional Rieman- 
nian geometries (i.e. the intrinsic geometry of the hypersurfaces) and of classifying 
normal (i.e. irrotational) time-like congruences. The properties of the normal time-like 
congruence of course relate to the way in which the hypersurfaces are imbedded in 
space-time (i.e. their extrinsic geometry). This classification is thus a purely geometri- 
cal matter and is independent of any field equations. 

A programme of this nature was recently initiated by Collins and Szafron (1979), 
who presented a classification which is essentially based on the Ricci tensor of the metric 
induced on the hypersurfaces and on the shear tensor of the normal congruence. They 
were eventually led to investigating space-times in which the normal congruence is 
geodesic and the space-like hypersurfaces are conformally flat. Their approach led to a 
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characterisation of the Szekeres (1975) inhomogeneous cosmologies. In order to set up 
a classification scheme which is sufficiently general to distinguish the various known 
inhomogeneous solutions, we have been compelled to consider additional quantities. 

Firstly consider the normal congruence. The (rate of) shear tensor crij (see e.g. Ellis 
1971 for standard notation) describes the anisotropy in this congruence. In order to 
describe its possible inhomogeneity, we found it necessary to consider quantities which 
are related to the gradients of scalars. Two natural choices are the acceleration vector U’  
of the congruence (which is related to the spatial pressure gradient when the Einstein 
field equations with perfect fluid source hold) and the spatial gradient of the expansion 
scalar 8 = uiii ,  defined by 

where 

is the projection tensor onto the hypersurfaces. One could also consider the spatial 
gradients of scalars such as ui,oii, U’&, uijui~’, but Ui and xi will be sufficient for our 
purposes. 

Secondly consider the intrinsic geometry of the hypersurfaces. When classifying 
four-dimensional geometries one makes use of the irreducible parts of the Riemann- 
Christoffel tensor, i.e. the trace-free Ricci tensor, the Ricci scalar and the Weyl 
conformal curvature tensor. In a three-dimensional geometry, however, the Weyl 
tensor is identically zero, and a necessary and sufficient condition for conformal flatness 
has to involve third derivatives of the metric components. Such conditions were given 
by Cotton (1899) and Schouten (1921) and are described most conveniently by a 
rank-two symmetric trace-free tensort defined by (York 1971) 

xi = e .hi. 
,I 19 

h’; = Sf,. + uiui 

Cii=277irs(Ri,-1 46 i 8 ) ; s .  (1.1) 

Here the indices run from 1 to 3, and all quantities refer to a 3~ (positive definite) metric 
tensor. We will refer to this tensor density as the Cotton-York tensor. (York in fact 
defined a tensor density.) We stress that this tensor is conformally invariant, in the 
sense that gij = R2gii implies that neij = Cij, and also has the important property that 
Cij = 0 if and only if the 3~ geometry is conformally flat. In view of this discussion, it is 
natural to use the trace-free Ricci tensor, the Ricci scalar and the Cotton-York tensor 
to classify 3~ Riemannian spaces. 

We have also found it necessary to consider the spatial gradient of some scalar 
associated with the three-geometry in order to describe the presence of inhomogenei- 
ties adequately. Of all the curvature invariants of the 3~-geometry, the most natural 
choice, in our opinion, is the Ricci scalar R*, since R* is related algebraically to the 
energy density and kinematic quantities when the Einstein field equations are satisfied, 
with a general matter field as source. The specific relatiomhip, assuming that the 
time-like eigenvector of the stress-energy tensor is irrotational and that the cosmologi- 
cal constant is zero, is 

R* = 2(u2-fO2+p), (1.2) 

where p is the energy density and u2 = qv” (Ellis 1971). Thus we consider the spatial 
gradient of the spatial Ricci scalar 

Xi = Rr,hii. (1.3) 

t Relative to coordinate transformations with positive Jacobian. 
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In § 2 we describe the classification schemes for normal time-like congruences and 
3~ Riemannian geometries. Sections 3-5 investigate the relationship between various 
previously studied classes of cosmological models and the present classification scheme. 
In particular we study to what extent the existence of groups of local isometries in 
space-time restricts the normal time-like congruence and the intrinsic geometry. In 8 3 
we consider two-parameter groups with space-like orbits; in 0 4 we consider three- 
parameter groups with 3~ space-like orbits, while § 5 is concerned with groups which 
act multiply transitively, i.e. such that the dimension of the orbits is less than the 
dimension of the group. In each case it is assumed that either the family of orbits 
coincides with the given family 9 of space-like hypersurfaces, or that each orbit forms a 
subset of a hypersurface in 9. In § 6 we discuss the results. 

The statements of the theorems presuppose a knowledge of standard terminology 
associated with local groups of isometries (see e.g. Eisenhart 1964) and (in 0 4) of some 
of the more specialised terminology associated with spatially homogeneous space- 
times (see Ellis and MacCallum 1969). The presentation of the proofs of the 
theorems presupposes a working knowledge of the orthonormal tetrad formalism as 
presented by MacCallum (1973). The specific formulae that are required are listed in 
the Appendix. 

2. The classification scheme 

We use an orthonormal frame {ea},  a = 0,1,2,3,  with eo = U,  the unit tangent vector of 
the normal time-like congruence. The e,, a = 1,2,3,  form an orthonormal frame on 
each space-like hypersurface. 

2.1. Classification of normal time-like congruences 

We denote the spatial frame components of the shear tensor, acceleration vector and 
expansion gradient respectively by a,@, U, and x,, with a, p = 1,2,3.  Since aiju' = 
0, riiui = 0,  xiui = 0, all other frame components of these tensors are identically zero. 
The spatial orthonormal frame relative to which the 3 x 3 trace-free symmetric 
matrix U,@ is diagonal is called a shear eigenframe. The classification is based on the 
extent to which the vectors rii and xi are aligned with each other and with the shear 
eigenframe. 

Class A: a,@ # 0; ri, is not a shear eigenvector and is not equal to zero. 
AI: X[&] # 0; xu is not a shear eigenvector. 
A2: ~r,Usl  # 0; xu is a shear eigenvector. 
A3: x[,Up]=O; xu #O. 
Ad xu .= 0. 

BI: ,y[,riel# 0; x, is not a shear eigenvector. 
B2: ,y[,riBl # 0; xu is a shear eigenvector. 

Class B: a,$ # 0; U, is a shear eigenvector. 

B3: ~ ~ , r i , ] = O ;  xu # 0. 
Bq: x, = 0. 

Class C: U,@ # 0; U, = 0. 
CI: xu # 0; xa is not a shear eigenvector. 
CZ: xu f 0; x, is a shear eigenvector. 
c3: x, =o. 
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Class D: aaB = O ;  U, $0.  
D1: ~ [ , U s l #  0. 
D2: ~[&31=0; xa # 0. 
D3: X ,  = 0. 

El: X, ZO. 
Ez: xa = 0. 

Class E: U,@ = 0;  U, = 0. 

Classes A-C can be subclassified according to whether aaB has a repeated eigen- 
value. 

2.2. Classification of 30 Riemannian spaces 

Let RZB, SZB and C& denote the frame components of the Ricci, trace-free Ricci and 
Cotton-York tensors of the induced metric on the hypersurfaces. Let C, denote the 
frame components of the spatial gradient of R*, the associated Ricci scalar (see 
equation (1.3)). A spatial orthonormal frame relative to which R:* (or St,) is diagonal 
will be called a Ricci eigenframe, and one relative to which C$ is diagonal will be called 
a Cotton-York eigenframe. The classification is based on the extent to which these 
eigenframes are aligned. 

Class I: S Z  and Czg have no eigenvectors in common. 
Class 11: S2B and C2B have one common eigenvector. 
Class 111: SzB and Cxs have a common eigenframe. 
Class IV: C z  = AS& A # 0. 
Class V: = O .  
Class VI: RZB = 0. 

Classes I-V can, where appropriate, be subclassified according to whether or not: 
(1) St and/or Czs admit repeated eigenvalues; 
(2) SZB and/or C:@ admit a zero eigenvalue; 
(3) R* = 0; 
(4) the spatial gradient of R* is an eigenvector of S:@ and/or C&. 

3. Two-parameter groups of local isometries 

We consider space-times which admit a two-parameter group G2 of local isometries. 
The group orbits are assumed to be orthogonal to the given time-like normal 
congruence, and hence must be space-like two-surfaces. There are exactly two 
canonically distinct types of Gz’s: Abelian and non-Abelian. In the former case the 
Killing vectors 6, Q of the group have zero Lie bracket, [t, Q ]  = 0, while in the latter case 
the Killing vectors may be chosen so that [e, J = 6. Both cases can be subclassified 
according to whether or not the group acts orthogonally transitively, i.e. whether or not 
the two-spaces orthogonal to the group orbits generate two-surfaces. A necessary and 
sufficient condition for this is that 

6 r i . j  &VI]  = 0, v [ ~ , ~ v & I =  0 

(see e.g. Carter 1973). Alternatively, if we specialise the orthonormal frame of Q 2 so 
that e2, e3 are tangent to the group orbits (as will be done in the remainder of this 
section), the group will act orthogonally transitively if and only if eo, el generate 
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two-surfaces, i.e. if and only if 

[eo, e11 = feo + gel (3.1) 
for some functions, f ,  g .  Finally there is the possibility that the group has Killing vectors 
which are hypersurface-orthogonal. Note that this necessarily implies that the group 
acts orthogonally transitively. In the Abelian case this implies that there exist coor- 
dinates relative to which the line element is diagonal. 

The last-mentioned situation is the one which has been most studied from the point 
of view of inhomogeneous cosmologies (e.g. Liang 1976), and even here it is difficult to 
find exact solutions with a perfect fluid source. Indeed only in the special case of a 
perfect fluid with equation of state p = p has much progress been made in generating 
exact solutions. In this case it has also proved possible to include Abelian groups which 
are only assumed to act orthogonally transitively (Wainwright et a1 1979). Little or no 
progress has been made in more general situations (e.g. orthogonal transitivity not 
assumed, or a non-Abelian group). 

The following theorem relates space-times admitting a Gz to the classification 
scheme of 8 2. We stress that it is assumed that the group orbits are contained in the 
given family of space-like hypersurfaces. 

Theorem 3.1. Suppose that a Gz of local isometries acts on space-time, with its orbits 
contained in a given family of space-like hypersurfaces. Let U be a unit vector tangent 
to the hypersurfaces and orthogonal to the group orbits. Then: 

(1) the acceleration vector and the spatial gradients of f3 and R* are parallel to U, 
but U is a shear eigenvector if and only if the group acts orthogonally transitively; 

(2) if the group is Abelian, U is an eigenvector of both Sxs and Cxs ; 
(3) if the group is not Abelian, and U is an eigenvector of SxB, the Cotton-York 

tensor is zero. 

Remark. We see that the various spatial gradients always lie in the preferred direction 
U, but that U is not in general an eigenvector of crus, Szp and C s .  However, we have: 

Corollary. If C:s # 0, then U is a common eigenvector of 
the group is Abelian and acts orthogonally transitively. 

S:s and C:s if and only if 

Proof of theorem 3.1. We have chosen the frame {e,} so that eo = U and e2, e3 are tangent 
to the group orbits. This means that e2,e3 are linear combinations of the Killing 
vectors: 

e2 = A [ +  Bq, e3 = C5' + Dq. (3.2) 

e4 = cos $e2 +sin $e3, (3.3) 

[ea, 5'1 = 0, [ea, 01 = 0, a = 0,  1,2 ,3 .  (3.4) 

We are free to perform a tetrad rotation of the form 

e; = -sin $e2 +cos $e3. 

Our immediate aim is to show that we can use (3.3) to obtain a frame which satisfies 

Firstly (3.4) holds with a = 0 on account of the lemma at the end of the Appendix. 
Secondly, on account of (3.2) and (3.4) with a = 0, the commutators [eo, eA],  A = 2,3,  
simplify to 

A = 2 , 3 ,  (3.5) B [eo, e*]= YOAeB, 



2020 J Wainwright 

with summation over B = 2,3 .  In addition, since e2 ,  e3 are tangent to two-surfaces, we 
have 

(3.6) 
with summation over B = 2,3 .  The form of (3.5) and (3.6) implies that eo, e2, e3 
generate hypersurfaces and hence that el is hypersurface-orthogonal. Thus the lemma 
at the end of the Appendix implies (3.4) with a = 1, which in turn yields 

B [e2, e31 = 7 2 3  eB,  

A = 2,3.  (3.7) B [el, e A ] = y l A e B ,  

At this stage it is easy to show thatt 

[e2, tal= Fae3, [e3, tal = 

for some functions Fa, with i2 = 0 , l  and 60 = 5, t1 = 7.  A short calculation now shows 
that we can obtain (3.4) with a = 2 , 3  by using (3.3), provided that we can choose 4 to 
satisfy the first-order partial differential equations 

tn(4) = Fa, n=o, 1. 

5 a ( F ~ )  - t ~ ( F a )  = CLFI-, 

The integrability conditions for this system are 

where the C’s are the structure constants of the group. That these conditions are 
identically satisfied is a consequence of the Jacobi identity (A2) applied to [a, &A and e2. 

Note that one can still use the tetrad freedom (3.3) with constant on the group orbits. 
Having established (3.4), the Jacobi identities (A2) applied to 50, e,, eb imply that the 
objects of anholonomity Y;b are constant on the group orbits, i.e. 

a2Y:b = 0 = a3Y:b, 

a$= e,(!) = eff,i. 

where 

We can now proceed with the main part of the proof. On comparing (3.5) and (Al )  

(3.8) 

and recalling that eo is irrotational by assumption, we find that 

U 2  = U3 = 0, ~ 7 1 2  + 0 3  = 0, ~ 1 3  - i22 = 0, 

and hence that 

[eo, el] = ilea - elel - 2crI2e2 - 2c13e3. 

It follows from this equation and the discussion preceding (3.1) that U( E el) is a shear 
eigenvector, i.e. u 1 2  = ~ 7 1 3  = 0, if and only if the group acts orthogonally transitively. 
The remainder of part (1) of the theorem follows from (3.8) and the fact that for any 
invariantly defined scalar f the spatial gradient of f is orthogonal to 5 , ~  and hence 
parallel to el.  

On comparing (3.6), (3.7) with (Al), we obtain 

rill = 0,  n13 - a2 = 0,  n12 + a3 = 0 

and hence 

[e*, e31 = -2a3e2 + 2 ~ 2 . ~ 3 .  

t This approach was suggested by C B Collins (private communication). 
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At this stage we can note that the group is Abelian, i.e. [f, 771 = 0, if and only if 
[ez ,  e3]  = 0, which is true if and only if a2 = a3 = 0. 

Equations (A4) now yield, using (A3) and the simplifications obtained so far, the 
formulae 

RT2 = -2a3(n22 - n 3 3 )  +4azn23, RT3 = -2a2(n22 - n33) -4a3nz3. 

Thus if the group is Abelian (i.e. a2 = a3 = 0) ,  el  is an eigenvector of R& In general the 
frame in use is not a Ricci eigenframe. However, since the R,*, are constant on the 
group orbits, we can use (3.3), with azJI = a3$ = 0, to achieve R;3 = 0, i.e. to introduce a 
Ricci eigenframe. Then we can use (A5) to calculate CEB, and in the Abelian case we 
find that Ct2 = CT3 = 0, i.e. el  is an eigenvector of Cj. This completes the proof of 
part (2 ) .  

if and only if u2 = a3 = 0 or 
n22 = nS3, n23 = 0. In the latter case (A4) implies that Rg3 = 0, i.e. the frame in use is a 
Ricci eigenframe. This permits us to use (A5) to conclude that Czp = 0, completing the 

0 

To prove part (3), we note that el  is an eigenvector of R 

proof of part (3) of the theorem. 

4. Spatially homogeneous space-times 

Suppose that space-time is spatially homogeneous, i.e. it admits a G3 of local isometries 
whose orbits are space-like hypersurfaces. We can introduce an orthonormal frame 
{e ,}  with eo chosen to be the unit normal of the group orbits and such that 

[ea, (A1 = 0, 

where the tA, A = 1,2,3,  are Killing vectors which generate the group (see Ellis and 
MacCallum (1969) for this and other results which we quote). Relative to such a frame 
the objects of anholonomity yobe are constant on the group orbits. Their spatial 
components yPsw can be decomposed algebraically into quantities na5 and U,, which 
satisfy 

n,a = ns,, ncas = 0 

with summation over the repeated p. Under rotations of the spatial frame, which are 
restricted to be constant on the orbits, naS and transform as components of a 
rank-two tensor and vector respectively. One can thus choose the e, to be an 
eigenframe of Itas, and in addition, if a, F 0, one can without loss of generality choose 
the eigenframe so that a, has a component only in the el  direction: 

(nus) = diag(n1, n2,n3), (act) = (a, 090). 

We refer to a frame with these properties as a canonical frame in a spatially homo- 
geneous space-time. Space-times with a, = 0 are said to be of class A and those with 
a, # 0 are said to be of class B in the Ellis and MacCallum classification. 

Theorem 4.1. In any spatially homogeneous space-time, the vector el  of a canonical 
frame is an eigenvector of both the spatial Ricci and Cotton-York tensors of the group 
orbits. If Shs # 0, then a canonical frame is a common eigenframe of Sf and if and 
only if the space-time is of class A (a, = O ) .  The acceleration vector and spatial 
gradients of R* and 8 are zero. 
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Proof. Relative to a canonical frame, equations (A4) yield 

RT2 = RT3 = 0, Rg3 = a1(n22-n33). (4.1) 

Thus el  is a Ricci eigenvector, and in class A space-times (al = 0) the canonical frame is 
a Ricci eigenframe. Further use of (A4) shows that in class B space-times (al # 0) a 
canonical frame is a Ricci eigenframe if and only if Sxs = 0. 

In this situation one can perform a change of frame of the form (3.3),  with + constant 
on the group orbits, to achieve R t3 = 0, i.e. so that the new frame is a Ricci eigenframe, 
but not necessarily a canonical frame. Then in general n23 # 0. Equations (A5) can now 
be used to conclude that CT2 = CT3 = 0, i.e. el  is a Cotton-York eigenvector. In 
addition in class A space-times relative to a canonical frame (a = 0, n23 = 0) it follows 

0 that Cg3 = 0, i.e. a canonical frame is a Cotton-York eigenframe. 

Remarks. (1) A canonical frame is not in general a shear eigenframe, but it is, for 
example, if the space-time is of class A and the Einstein field equations with a perfect 
fluid source hold (Ellis and MacCallum 1969). 

(2) The following theorems cover various special cases (cf Spero and Szafron (1978) 
for a detailed analysis of the case C$ = 0). 

Theorem 4.2. In class A space-times, if nus has a repeated eigenvalue, then S& and Cgs 
have a repeated eigenvalue and Cxs = AS:& If Shs # 0, then C$ # 0 and the following 
Bianchi-Behr group types are possible: 11, VI11 and IX. 

Proof. Since nus has a repeated eigenvalue and the space-time is of class A, we may 
assume without loss of generality that n22 = n33. Using equations (A4) and (A5) we 
quickly find that 

c f  = 3n11SL 

s t  = - 2 ~ T 2  = - 2 ~ $ 3  = fnl l (nl l  - n d ,  
with 

relative to a canonical frame. The theorem now follows using the Bianchi-Behr 
cl classification (see Ellis and MacCallum 1969). 

Theorem 4.3. In class B space-times with SzB # 0, Sts and C$ have a common 
eigenframe if and only if a: + n2n3 = 0 in the canonical frame, i.e. if and only if the group 
is of Bianchi-Behr type In this situation Sxs and Cxs have a repeated 
eigenvalue and Cxe = AS:@, with A = 0 if and only if 112 = -n3 in the canonical frame (i.e. 
nuu = 0). 

Proof. Since Szs # 0, it follows from the proof of theorem 4.1 that a canonical frame is 
not a Ricci eigenframe. We thus transform to a Ricci eigenframe as in the proof of 
theorem 4.1. The requirement that Rt3 = 0 is, using equations (A4), 

(4.2) 

(4.3) 
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In addition, equations ( A 4 )  in a canonical frame imply that nzz # n33, which in a Ricci 
eigenframe becomes 

( n 2 2 - - d + 4 n L  z 0, (4.4) 

since this quantity is invariant under (3.3) (Collins and Szafron 1979). At this stage the 
non-zero components of R:,., in the Ricci eigenframe are 

1 RTI = -z(nzz-n33)'-2n& -2a: ,  

~ 2 * 2  = f ( n k  - n:3) - 2 a l ( a l +  n 2 3 ~  
R %  = -a(n& -n:3)-2al(a1-n23) .  

By using these equations together with equations (4.2) and (A5) we find that the only 
non-zero off -diagonal term of Cza is 

2 c ; ~  = -4nz3(a: + 11221133 - n23 ). 

Thus on account of (4.3),  C;3 = 0 2 and only if 
2 a: + n22n33 - n23 = 0, 

i.e. if and only if 

(4.5) 

(4.6) 2 u1 +n2n3=0 ,  

where nz, n3 are the two non-zero eigenvalues of nap 
Note that, on account of 14.2) and (4.4), Rg2 - R f 3  # 0, so that C:3 cannot be 

transformed to zero. In other words, if Sz6 # 0, a Ricci eigenframe is a Cotton-York 
eigenframe if and only if relation (4 .5)  holds, i.e. if and only if the group is of type VIh, 
with h = - 1  (Ellis and MacCallum 1969). 

An analysis of (4.2) and (4.5) subject to (4.4) implies that n~zn33(n22 - n33) = 0.  If 
n22 = n33, which on account of (4.2) and (4.3) implies nz2 = 0 = n33 (i.e. the eigenvalues 
satisfy nz = -n3), equations (A5) imply that Cxs = 0. If nZ2 = 0, n33 # 0, it follows that 
RT1 = R:z, and subsequently, using equations (A5), that 

CTI = C& = n33(R& - R$3 1. 
Hence C:,., = AS:,.,. The remaining case is similar. 0 

Corollary. If Czs # AS:,., # 0 in a spatially homogeneous space-time, then 
have a common eigenframe if and only if the space-time is of class A. 

and SZB 

In other words, apart from various degenerate cases, class A and class B spatially 
homogeneous space-times are distinguished by whether or not CzB and SzB have a 
common eigenframe. 

5. Multiply transitive groups of local isometries 

We first consider the case of a three-parameter group with 2~ orbits which are 
contained in the preferred hypersurfaces. This means that the space-time admits a 
one-parameter local isotropy subgroup which acts, at each point, in the 2~ subspace 
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tangent to the group orbits. This subgroup leaves invariant the metric, and, by 
assumption, the normal vector field U. Thus the space-time, the vector field U and the 
geometry of the hypersurfaces are locally rotationally symmetric (abbreviated LRS; see 
Ellis 1967). We have the following: 

Theorem 5.1. Suppose that space-time admits a G3 of local isometries with 2~ orbits 
contained in the given hypersurfaces. Let U be a unit vector tangent to the hypersur- 
faces and orthogonal to the group orbits. Then U is an eigenvector of the shear tensor 
and spatial Ricci tensor, and the spatial Cotton-York tensor vanishes. The spatial 
gradients of R* and 6 and the acceleration vector of the normal congruence are parallel 
to U. In addition the spatial Ricci and shear tensors each have a repeated eigenvalue, 
and the associated 2~ eigenspace is orthogonal to U. 

Remark. The assertions that comprise this and the next theorem, except possibly for 
those pertaining to the Cotton-York tensor, will be fairly obvious to anyone familiar 
with local rotational symmetry. For this reason, the proofs are only given in outline at 
the end of the section. 

We now consider the case of a four-parameter group with 3~ orbits which are 
assumed to be the given hypersurfaces. We can assume that the group does not admit a 
three-parameter subgroup with 2~ orbits, since this is included in theorem 5.1. The 
space-time still admits a one-parameter local isotropy group which induces a group of 
rotations in a 2~ subspace of the tangent space at each point. Let U be a unit vector 
which is orthogonal to this 2~ subspace at each point. 

Theorem 5.2. Suppose that space-time admits a G4 of local isometries with 3~ 
space-like orbits, and there exists no three-parameter subgroup with 2D orbits. Then 
the Cotton-York tensor and the trace-free Ricci tensor of the metric induced on the 
group orbits are related according to 

* CX5 = ASp5, 

where A # 0 is constant on the orbits. In addition S& (and hence CzB) and the shear 
tensor of the normal congruence have a repeated eigenvalue, with the associated 2~ 
eigenspace orthogonal to the vector U. The acceleration vector and the spatial gradients 
of R* and 8 are zero. 

Proof of theorems 5.1 and 5.2. Choose an orthonormal frame with e, = U ,  el = U. The 
discussion preceding the theorems indicates that in each case the space-time, the vector 
field U and the geometry of the hypersurfaces are LRS relative to the two-space spanned 
by ez and e3, i.e. at each point all directions in this two-space are equivalent. Hence 
each vector in this two-space must be an eigenvector of the shear tensor and the spatial 
Ricci and Cotton-York tensor (unless any of these tensors is zero). Thus the chosen 
spatial orthonormal frame is an eigenframe of each of these tensors. In addition any 
geometrically defined vector orthogonal to U, e.g. U and the spatial gradients of 6 and 
R*, must be orthogonal to the two-space spanned by e2, e3, and hence parallel to U, 
unless they vanish, which is the case in theorem 5.2. Theorems 5.1 and 5.2 are also 
distinguished by the fact that in the first one ez and e3 are tangent to the 2D group orbits, 
so that [e2,  e3]  is a linear combination of e2 and e3. Equations (Al) then imply that 
n11= 0, i.e. rill = 0 in theorem 5.1 and nl l  # 0 in theorem 5.2. To complete the proof 
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we need to calculate C$. In an LRS space-time with a frame as chosen we have 

a2YC*b = a3YC*b = 0 
and 

n22 = n33, n23 = 0, n12 = -3 ,  n13 = a2 
(see Ellis and MacCallum 1969, p 126), and from the above remarks 

Using these results, equations (A5) quickly yield 

C;", = -2C& = -2CT3 = 2nll(RT1 -RT2). 

(Recall that we have already established that the frame in use is an eigenframe of Cxs.) 
Since n l l  = 0 in theorem 5 . 1  and nl l  # Oin theorem 5.2,  thiscompletes the proof. 0 

6. Conclusions 

The results presented describe the restrictions imposed on the intrinsic and extrinsic 
geometry of a given family of space-like hypersurfaces by the existence of various 
groups of isometries, and enable us to relate these classes of space-times to the 
classification scheme in 0 2. We briefly summarise the relationship, which shows that 
the classification scheme provides a clear distinction between the various isometry 
groups. 

( 1 )  Two-parameter group with space-like orbits. In general the extrinsic geometry is 
A3 and the intrinsic geometry is I. If the group acts orthogonally transitively, the 
extrinsic geometry is in general B3. If the group is Abelian, the intrinsic geometry is in 
general 11. 

It is interesting that orthogonal transitivity only affects the extrinsic behaviour, 
while commutativity of the group only affects the intrinsic behaviour. 

( 2 )  Three-parameter group with 30 space-like orbits. In general the extrinsic 
geometry is C3. The Ellis-MacCallum A space-times have intrinsic geometry of class 
111, while the B space-times have intrinsic geometry of class I1 in general. 

( 3 )  Three-parameter group with 20 space-like orbits. The extrinsic and intrinsic 
geometries are respectively B3 and V in general. 

(4) Four-parameter group with 30 space-like orbits. The extrinsic and intrinsic 
geometries are respectively C3 and IV in general. 

The results of this paper are independent of any field equations. The role of the 
Einstein field equations can be seen by inspection of the tetrad form of the field 
equations as given by MacCallum (1973, equations (82)-(84)). The (0,O) and (0, CY) 

equations relate extrinsic quantities and their derivatives to source terms. On the other 
hand the (a,@) equations express the intrinsic Ricci components RZs in terms of 
extrinsic quantities, their derivatives and source terms. Thus the Einstein field equa- 
tions relate the intrinsic geometry to the extrinsic geometry, the strength of this 
relationship depending on the complexity of the source terms, which are derived from 
the energy-momentum tensor. For example, if the Einstein field equations with perfect 
fluid source hold in a class A spatially homogeneous space-time, then a Fermi- 
propagated shear eigenframe is necessarily an eigenframe of the spatial Ricci and 
Cotton-York tensors, as follows from theorem 4.1 and Ellis and MacCallum (1969, p 
118). 
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In a subsequent paper we shall analyse the various classes of known inhomogeneous 
cosmologies from the point of view of the classification scheme presented in this paper. 
Some of these exact solutions-such as the Szekeres (1975) solutions (see also Szafron 
1977, Szafron and Wainwright 1977), the type-N perfect solutions of Oleson (1971), 
and a class of algebraically special solutions (Wainwright 1974)-do not admit any 
Killing vectors in general (see Bonnor et a1 (1977) in connection with the Szekeres 
solutions). Apart from the Szekeres solutions, which have zero acceleration and zero 
Cotton-York tensor (Berger et ul 1977, Szafron and Collins 1979), we will show that 
these solutions in general satisfy no restrictions as regards the present classification 
scheme. 

Finally we discuss a possible physical significance of the intrinsic classification. 
Berger et a1 (1977) have suggested that there may be some relation between the 
conformal curvature of three-slices in space-time and the presence of gravitational 
waves. Indeed it was this remark that first directed our attention to the Cotton-York 
tensor. This conjecture appears to be borne out in the case of the Szekeres solutions, 
since the Cotton-York tensor vanishes, and the work of Bonnor (1977) implies that 
they are indeed non-radiative. Furthermore, Lukash (1976) has shown that certain 
spatially homogeneous perfect fluid solutions can be interpreted .as containing gravita- 
tional waves. His analysis leads to the conclusion that the Bianchi-Behr type VI10 
solutions, which are of class A, contain standing waves only, while the type VIIh 
solutions, which are of class B and hence have a more complicated Cotton-York tensor 
(cf theorem 4,1), can admit travelling waves. In both cases the Cotton-York tensor is 
non-zero. Whether or not the algebraic structure of the Cotton-York tensor is in 
general related to the nature of the gravitational waves requires further investigation, 
however. 

Appendix 

This Appendix contains formulae which relate to the orthonormal tetrad formalism as 
presented by MacCallum (1973). All the formulae, with the exception of those relating 
to the Cotton-York tensor, which we believe are new, are taken from MacCallum 
(1973). The commutators of the frame vectors e,, a = 0 ,1 ,2 ,3 ,  which have the general 
form 

[e,, GI  = 

are written out explicitly as 

[eo, el] = ri 'eo- elel - ( (T12-W3 - &)e2 - ( a 1 3  + 02 + n2)e3, 

[eo, e21 = ri eo - ( a 1 2  + 03 + W e 1  - &e2 - ( a 2 3  - 01 - We3,  

[eo, e31 = U3eo - (ai3 - 02 - 02)el - ( ~ 2 3  + 01 + We2 - 03633, 

[el, e21 = -203e0 + (n13 - u2)e1+ (n23 + ade2 + n33e3, 

[ez, e31 = -201e0+ nl le l+ (n12 - u3)ez + (n13 + u z h ,  

[e3, ell = -202eo+ (nlz+ u3)ei + n22e2 + (n23 - ude3 

2 

(-41) 

in terms of the kinematical quantities associated with the eo congruence and the 
quantities naB, up and R,. 
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We also require the Jacobi identity 

EX, E Y, Zll+ Y, [Z, XI1 + E, [X, YII = 0 

for arbitrary vector fields X, Y, 2. When applied to the vector fields e,,, em e,, equation 
(A2) can be written in the form 

awnw + ~ ~ ~ ~ a , , a , - 2 e ~ ~ 0 @  -2na8a8 - 2 q a ~ ” o , , ~ ,  =o. 
When written out, subject to the requirement that eo be irrotational, i.e. oa = 0, these 
equations read 

&fill + a2nl2 + a3n3l-k a2a3-a3a2-2(nllal+ nl2a2 + n31(13) = 0, 

a 2 n z z + a 3 n z ~ + a i n i z + a s a i - d i ~ 3 - 2 ( n z 2 ~ 2 + n z s ~ s + n i z ~ i ) = O ,  (A3) 

83n33+aln31 +a2n23+ala2-a2al-2(n33a3+n3lal+n23a2)=0. 

When eo is irrotational, the quantities R$@ of MacCallum (1973) are the frame 
components of the Ricci tensor induced on the hypersurfaces orthogonal to eo. The RZB 
can be expressed in terms of the Ita8 and aa according to 

RZ@ =a(aQg)+ q,,v(a[av-2avIn@)w +2nA(an@)A 
- &g(2aAaA + nA6nAa - in2 - a d ) .  

For the purposes of this paper it is convenient to write these equations out explicitly. 
One obtains 

RTi = 2 & ~ 1 +  a 2 ( ~ 2 -  ni3) + + n12) + 2(a2ni3-&niz) +$(n:1 -nZ2 -n;3)+11221233 

-2n;3 -2(a: + a ;  +a: ) ,  

-2n:3 -2(a: +a;  +a;) ,  

-2n:2 -2(a: + a ;  +a; ) ,  

RT2 = 2 8 2 ~ 2  + ai(n23 + ai) + ada3-ni2) + 2(a3ni2-aln23) + h ; 2  - n:i -n:3) + nlln33 

RT3 = 2 8 3 ~ 3  +&(ai -1123) +&(a2 + nid+  2(ain23-a2n13) + h ; 3  - n:i -n;2) + n11n22 

(A4) 
RT? = ~ a l ( ~ 2 + n 1 3 ) + ~ a 2 ( ~ 1 - n 2 3 ) - $ a 3 ( n l l  - n 2 2 ) + ~ 3 ( n l l - ~ 2 2 ) + a 2 n 2 3 - - l n 1 3  

+n12(nll+ n22-n33)+2n13n23, 

RT3 = h(a3-ni2)  +&%(ai + n23)+!&(nii - n33) + az(n33- nil)  + aini2-a3n23 

+ niJ(n11- nZ2 + 1133) + 2n12n23, 

RZ3 = h ( a 3  + ni2)+%3(az-ni3) +hi(n33-n22) + ~i(n22-n33) + a3nis-az.niz 

+n23(-nll+ n22+n33)+2nl2nl3* 

We now derive a formula for the Cotton-York tensor density as defined by equation 
(1.1). We prefer to use the associated tensor, i.e. to replace the antisymmetric tensor 
density eiik by the tensor qi’k in the definition. The frame components are given by 

C*a8 = 2qaru(R*8,,;v -$i3@,,R*;,), 

where 

R*@,,:” =  ay^**,, + ~ * ” , , r @ , ~  - ~*@~r*,,, .  
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It is in fact more convenient to use a form of C*=’ in which the symmetry is manifestly 
obvious, namely 

2 77 r”caR *’) &;U* 
c*=8 = 

On expressing the rupy in terms of the n,’ and a,, and making standard simplifications, 
we obtain 

C*=’ = 2 r ] ” y ( o L [ ~ u  -av]R*B)w 

+4n”“R*’’A +nnwvq pKuR*fiKnvu- R*na8 -nM,,R*uu8p’. 

It is convenient to write these equations out explicitly relative to an eigenframe of R:@, 
i.e. subject to RTz = RT3 = R$ = 0. One obtains 

CT1 = 2n11RT1 +(-rill - n 2 2 + n 3 M %  +(-nll+n22-n33)R&, 

C &  = (-nll-nzz+n33)Rfl + ~ ~ z z R &  +(n11-n2~-n33)RJ*, 

C% = (-n11+n22-n33)RT1 +(nll-nzz-n33)R$ +2n33Rh3, 

C &  =-83(RT1 -R&)+nlz(R?l + R h  -2R&)+a3(RT1 -R?z ) ,  

C T3 = -&(R T3 - R 7 1  ) + n 13 ( R  ?I - 2 R & + R ?3 ) + a 2(R T3 - R f1 ), 

C$ = - & ( R &  -RT3)+n23(-2RT1 +RT2 + R ~ 3 ) + a l ( R & - R & ) .  

( A 3  

We note that formulae which are equivalent to the vanishing of the expressions in (A5) 
have been given by Spero and Szafron (1978) and Szafron and Collins (1979). 

Finally we require the following: 

Lemma. If 8 is a Killing vector field and q is a hypersurface-orthogonal vector field 
which is orthogonal to 6, then [S, r ] ]  = 0. 

The proof is straightforward. 

Acknowledgments 

I am indebted to C B Collins and B J Marshman for reading and suggesting improve- 
ments to the manuscript. I would also like to thank G W Horndeski and, in particular, D 
Szafron for many helpful discussions. This work was supported in part by a grant from 
the National Science and Engineering Research Council of Canada. 

References 

Berger B K, Eardley D M and Oleson D W 1977 Phys. Rev. D 16 3086-8 
Bonnor W 1977 Commun. Math. Phys. 51 191-9 
Bonnor W B, Sulaiman A H and Tomimura N 1977 Gen. Rel. Grav. 8 549-59. 
Carter B 1973 Black Hole Equilibrium Srates in Black Holes ed. C DeWitt and B S DeWitt (New York: 

Collins C B and Szafron D 1979 J. Math. Phys. 20 to appear 
Cotton E 1899 Ann. Fac. Sci. Toulouse (II) 1385-438 

Gordon and Breach) 



Inhomogeneous cosmologies 2029 

Eisenhart L P 1964 Riemannian Geometry (Princeton: University Press) 
Ellis G F R 1967 J. Math. Phys. 8 1171-94 
- 1971 Relativistic Cosmology in General Relativity and Cosmology, Proc. Znt. School of Physics Enrico 

Ellis G F R and MacCallum M A H 1969 Commun. Math. Phys. 12 108-41 
Liang E P 1976 Astrophys. J. 204 235-50 
Lukash V N 1976 Nuovo Cim. 358 268-92 
MacCallum M A H 1973 Cosmological Models from a Geometric Point of View in Cargese Lectures in Physics 

6, Lectures at the International Summer School of Physics, Cargese, Corsica 1971 ed. E Schatzman (New 
York: Gordon and Breach) 

Fermi Course XLVZZ, 1969 ed. R K Sachs (London and New York: Academic) 

Oleson M 1971 J. Math. Phys. 12 666-72 
Schouten J A 1921 Math. 2.11 55-88 
Spero A and Szafron D A 1978 J. Math. Phys. 19 1536-41 
Szafron D A 1977 J. Math. Phys. 18 1673-7 
Szafron D A and Collins C B 1979 J. Math. Phys. 20 to appear 
Szafron D and Wainwright J 1977 J. Math. Phys. 18 1668-72 
Szekeres P 1975 Commun. Math. Phys. 41 55-64 
Wainwright J 1974 Znt. J. Theor. Phys. 10 39-58 
Wainwright J, Ince W C W and Marshman B J 1979 Gen. Rei. Grav. 10 259-71 
York J W 1971 Phys. Rev. Lett. 26 1656-8 


